Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543392

RESUMO

This research investigates the durability of large-format 3D-printed thermoplastic composite material systems under environmental exposure conditions of moisture and freeze-thaw. Durability was evaluated for two bio-based composite material systems, namely wood-fiber-reinforced semi-crystalline polylactic acid (WF/PLA) and wood-fiber-reinforced amorphous polylactic acid (WF/aPLA), and one conventionally used synthetic material system, namely short-carbon-fiber-reinforced acrylonitrile butadiene styrene (CF/ABS). The moisture absorption, coefficient of moisture expansion, and reduction of relevant mechanical properties-flexural strength and flexural modulus-after accelerated exposure were experimentally characterized. The results showed that the large-format 3D-printed parts made from bio-based thermoplastic polymer composites, compared to conventional polymer composites, were more susceptible to moisture and freeze-thaw exposure, with higher moisture absorption and greater reductions in mechanical properties.

2.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834624

RESUMO

This work focuses on simulating the thermal history of a vertical wall consisting of a thermoplastic composite material, poly(ethylene terephthalate) glycol (PETG) with short carbon fiber reinforcement, manufactured using a Big Area Additive Manufacturing (BAAM) system. The incremental deposition process used in additive manufacturing, which corresponds to the repeated deposition of hot material onto cooler material, contributes to the presence of residual stresses and part warping. The prediction of these mechanisms is dependent on thermal history of the part, and the major motivation of this work was to improve the accuracy of finite element (FE) models used to quantify the thermal history of large-format additively manufactured parts. Thermocouples were placed throughout the part at varying heights to measure temperature as a function of time. The FE model developed found a thermal contact conductance between the printed part and the bed of 10 W/m2K and convection coefficient values that linearly varied from 3 to 15 W/m2K through the wall height when making a temperature comparison with the output from the thermocouples. It is also demonstrated that the FE model with a constant convection coefficient under-predicts model temperature at the beginning of the manufacturing process when compared against the model with a variable convection coefficient. The impact of this difference was seen in the stress values, which were larger for the model with a constant convection coefficient. Finally, a correlation equation was derived which allows the findings to be generalized to other vertical structures manufactured on the BAAM. In summary, this work offers valuable insights on material characterization, real-time thermocouple placement, and FE modeling of large-format additively manufactured parts.

3.
Polymers (Basel) ; 14(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35567045

RESUMO

An improved simulation-based thermoforming design process based on the integration of material characterization and as-formed structural analysis is proposed. The tendency of thermoplastic composites to wrinkle during forming has made simulation critical to optimized manufacturing, but the material models required are complex and time consuming to create. A suite of experimental methods has been developed for measurement of several required properties of the molten thermoplastic composite. These methods have the potential to enhance thermoplastic composites manufacturing by simplifying and expediting the process. These material properties have been verified by application to thermomechanical forming predictions using commercial simulation software. The forming predictions showed improved agreement with experimental results compared to those using representative material properties. A tool for using thermoforming simulations to inform more accurate structural models has been tested on a simple case study, and produced results that clearly differ from those of models using idealized fiber orientations and thicknesses. This provides evidence that this type of as-formed analysis may be necessary in some cases, and may be further investigated as an open source alternative to commercial analysis software.

4.
Materials (Basel) ; 15(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454459

RESUMO

Large format polymer extrusion-based additive manufacturing has been studied recently due to its capacity for high throughput, customizable bead size and geometry, and ability to manufacture large parts. Samples from three fiber-filled amorphous thermoplastic materials 3D printed using a Masterprint 3X machine from Ingersoll Machine Tools were studied, along with their neat counterparts. Characterization techniques included thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermo-mechanical analysis (TMA). TGA results showed that the fillers decreased the degradation temperature for most of the materials investigated, with a 30 °C decrease for polycarbonate (PC) and a 12 °C decrease for polyethylene terephthalate glycol (PETG). For all the materials used, heat capacity increases with increasing temperature. Moreover, results show that a highly conductive filler increases the heat capacity. In contrast, a material with a lower conductivity decreases the heat capacity indicated in the 15.2% and 2.54% increase for acrylonitrile butadiene styrene (ABS) and PC and a 27.68% decrease for PETG. The TMA data show that the printed bead exhibits directional properties consistent with an orthotropic material. Smaller strains and coefficient of thermal expansion (CTE) were measured along the bead direction and across the bead compared to the through bead thickness showing that fillers are predominantly oriented in the bead direction, which is consistent with the literature. CTE values through bead thickness and neat material are similar in magnitude, which corresponds to the CTE of the matrix material. The experimental results serve to characterize the effect of fiber filler on the part thermal strains in three principal directions and two-part locations during the extrusion and bead deposition of large-format polymer extrusion-based additive manufacturing technologies.

5.
Materials (Basel) ; 13(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167578

RESUMO

The material properties of thermoplastic polymer parts manufactured by the extrusion-based additive manufacturing process are highly dependent on the thermal history. Different numerical models have been proposed to simulate the thermal history of a 3D-printed part. However, they are limited due to limited geometric applicability; low accuracy; or high computational demand. Can the time-temperature history of a 3D-printed part be simulated by a computationally less demanding, fast numerical model without losing accuracy? This paper describes the numerical implementation of a simplified discrete-event simulation model that offers accuracy comparable to a finite element model but is faster by two orders of magnitude. Two polymer systems with distinct thermal properties were selected to highlight differences in the simulation of the orthotropic response and the temperature-dependent material properties. The time-temperature histories from the numerical model were compared to the time-temperature histories from a conventional finite element model and were found to match closely. The proposed highly parallel numerical model was approximately 300-500 times faster in simulating thermal history compared to the conventional finite element model. The model would enable designers to compare the effects of several printing parameters for specific 3D-printed parts and select the most suitable parameters for the part.

6.
Polymers (Basel) ; 12(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991599

RESUMO

The use of wood plastic composite lumber as a structural member material in marine applications is challenging due to the tendency of wood plastic composites (WPCs) to creep and absorb water. A novel patent-pending WPC formulation that combines a thermally modified wood flour (as a cellulosic material) and a high strength styrenic copolymer (high impact polystyrene and styrene maleic anhydride) have been developed with advantageous viscoelastic properties (low initial creep compliance and creep rate) compared with the conventional WPCs. In this study, the creep behavior of the WPC and high-density polyethylene (HDPE) lumber in flexure was characterized and compared. Three sample groupings of WPC and HDPE lumber were subjected to three levels of creep stress; 7.5, 15, and 30% of the ultimate flexural strength (Fb) for a duration of 180 days. Because of the relatively low initial creep compliance of the WPC specimens (five times less) compared with the initial creep compliance of HDPE specimens, the creep deformation of HDPE specimens was six times higher than the creep deformation of WPC specimens at the 30% creep stress level. A Power Law model predicted that the strain (3%) to failure in the HDPE lumber would occur in 1.5 years at 30% Fb flexural stress while the predicted strain (1%) failure for the WPC lumber would occur in 150 years. The findings of this study suggest using the WPC lumber in structural application to replace the HDPE lumber in flexure attributable to the low time-dependent deformation when the applied stress value is withing the linear region of the stress-strain relationship.

7.
Polymers (Basel) ; 12(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877724

RESUMO

Based on previous research, a novel wood-plastic composite (WPC) lumber has shown potential to replace high-density polyethylene (HDPE) lumber in the construction of aquacultural geodesic spherical cage structures. Six HDPE and six WPC assemblies, which are representative of typical full-size cage dimensions, were fabricated by bolting pairs of triangular panel components made with connected struts. Half of the panel assemblies had a plastic-coated steel wire mesh to simulate the actual restraint in field applications of the cages. The objective of the research was to characterize the structural performance of the panel assemblies under compressive loading. To determine the critical buckling load for the panel assemblies made from WPC and HDPE struts with and without wire mesh, Southwell's method was implemented. A two-dimensional (2D) linear finite element analysis model was developed to determine axial forces in the struts of the panel assembly for the applied load and boundary conditions. This model was used to determine strut compressive forces corresponding to the Southwell's method buckling load and the experimental failure load. It was found that the wire mesh increased the load capacity of both HDPE and WPC panel assemblies by a factor of two. The typical failure mode of the panels made from HDPE lumber struts, with and without wire mesh, was buckling of the struts, whereas the failure mode of the WPC panels, with and without wire mesh, was fracture at the notched section corresponding to the location of the bolts. The load capacity of the panel assemblies made from WPC lumber struts was three times and 2.5 times higher than the load capacity of the panel assemblies made from HDPE lumber struts with and without wire mesh, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...